From Aristotle to John Searle and Back Again: Formal Causes, Teleology, and Computation in Nature

The richly eclectic Ed Feser has brought my attention to his latest paper. If you don’t know Ed’s work or at least his blog (as well as his popular writings), you really should explore his diverse interests. Ed is one of those highly unusual writers because he so naturally draws on contemporary, ancient and scholastic perspectives and this latest article is a classic instantiation of the worlds he simultaneously inhabits. I’ve repeatedly said that the most interesting people are those with a distinctive quality of mind, regardless of the particular positions they hold — an attitude that has long since been expunged from much of formal philosophical teaching. Ed reminds me a bit of Richard Sorabji in the sense of marrying the deep philosophical (and unfashionable) past with the ever present — and that’s high praise indeed. Anyway, here’s the abstract to Ed’s paper:

Talk of information, algorithms, software, and other computational notions is commonplace in the work of contemporary philosophers, cognitive scientists, biologists, and physicists. These notions are regarded as essential to the description and explanation of physical, biological, and psychological phenomena. Yet, a powerful objection has been raised by John Searle, who argues that computational features are observer-relative, rather than intrinsic to natural processes. If Searle is right, then computation is not a natural kind, but rather a kind of human artifact, and is therefore unavailable for purposes of scientific explanation.

In this paper, I argue that Searle’s objection has not been, and cannot be, successfully rebutted by his naturalist critics. I also argue, however, that computational descriptions do indeed track what Daniel Dennett calls “real patterns” in nature. The way to resolve this aporia is to see that the computational notions are essentially a recapitulation of the Aristotelian-Scholastic notions of formal and final causality, purportedly banished from modern science by the “mechanical philosophy” of Galileo, Descartes, Boyle, and Newton. Given this “mechanical” conception of nature, Searle’s critique of computationalism is unanswerable. If there is truth in computational approaches, then this can be made sense of, and Searle’s objection rebutted, but only if we return to a broadly Aristotelian-Scholastic philosophy of nature.

The plan of the paper is as follows. The next section (“From Scholasticism to Mechanism”) provides a brief account of the relevant Aristotelian notions and of their purported supersession in the early modern period. The third section (“The Computational Paradigm”) surveys the role computational notions play in contemporary philosophy, cognitive science, and natural science. The following section (“Searle’s Critique”) offers an exposition and qualified defense of Searle’s objection to treating computation as an intrinsic feature of the physical world—an objection that, it should be noted at the outset, is independent of and more fundamental than his famous “Chinese Room” argument. In the fifth section (“Aristotle’s Revenge”), I argue that the computational paradigm at issue essentially recapitulates certain key Aristotelian-Scholastic notions commonly assumed to have been long ago refuted and that a return to an Aristotelian philosophy of nature is the only way for the computationalist to rebut Searle’s critique. Finally, in “Theological Implications,” I explore ways in which computationalism, understood in Aristotelian terms, provides conceptual common ground between natural science, philosophy, and theology.